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Abstract--We derive an analytical expression that relates the shape of a fault in cross-section to the shape of the 
bedding horizons in its hanging wall block. The expression assumes that the hanging wall deforms by simple shear 
and that the footwall remains undeformed throughout. Although this paper concentrates on normal faults, the 
expression is equally valid and applicable to thrust faults. The direction of simple shear in the hanging wall block 
is arbitrary and has a dramatic effect on the predicted fault or bedding geometry. There is no reason to believe 
that the simple shear occurs on vertical planes, as is commonly assumed in graphical approaches to this problem, 
and ignoring the presence of inclined simple shear is likely to lead to considerable underestimates of the amount 
of extension across normal faults and in the amount of shortening across thrusts. Similar though more 
complicated expressions can be obtained when compaction within the hanging wall block is taken into account. 
For a planar normal fault such compaction may result in the development of a hanging wall syncline. 

INTRODUCTION 

IN REGIONS of extensional tectonics, a knowledge of the 
geometry and kinematics of large-scale faults is obvi- 
ously of crucial importance, not only in evaluating par- 
ticular commercial prospects, but also in understanding 
the nature and amount of extension involved. Although 
it is now clear that large-scale crustal and lithospheric 
stretching occurred during the formation of many con- 
tinental sedimentary basins and margins, it is not always 
easy to reconcile estimates of the amount of stretching 
obtained from measurements of crustal thickness and 
subsidence with those obtained from the observed nor- 
mal faulting (e.g. de Charpal et al. 1978, Le Pichon & 
Sibuet 1981, Wood & Barton 1983, Ziegler 1983). Much 
of this disagreement is probably attributable to a poor 
understanding of the geometry of the large normal faults 
that accommodate at least some, and perhaps most, of 
the extension at shallow crustal levels. 

Recent reviews have tended to concentrate on obser- 
vations of the faults themselves, using either outcrops 
and seismic reflection profiles (e.g. Wernicke & Burch- 
fiel 1982, Anderson et al. 1983, Smith & Bruhn 1984) or 
seismological observations of earthquakes generated by 
active normal faults (e.g. Jackson & McKenzie 1983, 
Jackson 1986). This paper is concerned with a different 
approach to the same problem: what is the detailed 
relationship between the geometry of a normal fault and 
the geometry of the sediments in its hanging wall? The 
usual method of investigating their connection is graphi- 
cal (Verrall 1981, Gibbs 1983, 1984) and assumes that 
the hanging wall is deformed by simple shear in vertical 
planes. We develop below a general analytic solution to 
the same problem. Our solution also assumes the defor- 
mation is by simple shear, but makes no assumption 
about the inclination of the shear planes to the vertical. 

RELATIONS BETWEEN SEDIMENT AND FAULT 
GEOMETRIES 

The problem 

The problem is illustrated by Fig. 1, showing a listric 
normal fault that, for simplicity, becomes planar and 
horizontal at depth. (In general, faults need do neither 
of these things.) The geometry before movement is 
shown in Fig. 1 (a). If movement now occurs such that all 
points in the hanging wall move a vector h relative to the 
footwall, the geometry would look like Fig. l(b). In this 
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Fig. 1. Diagrams to illustrate the deformation of the hanging wall 
necessary to fill the potential void beneath it, if it moves a vector h 
relative to the footwall. After internal deformation of the hanging wall 
only points far from the fault outcrop have a displacement h relative to 

the footwall. Note that the footwall remains undeformed. 

897 



898 N . J .  WHITE, J. A. JACKSON and D. P. MCKENZIE 

case h is horizontal with magnitude h. The cross-section 
has extended by area A, which, if there is no movement 
out of the plane of the section, is equal to area B. In 
reality no voids will occur and the hanging wall deforms, 
filling the gap beneath it, to leave a space above (Fig. 
lc), such that area C = area A = area B. It is clear that 
the shape of the hanging wall surface (or 'rollover') in 
Fig. 1 (c) is in some way related to the underlying fault 
geometry. Only at some remote point in the hanging 
wall, far from the surface outcrop of the fault, will the 
relative movement between hanging wall and footwall 
be represented by h. Closer to the fault outcrop the 
relative motion has been changed by the internal 
deformation of the hanging wall necessary to fill the 
(potential) void beneath it. A cross-section in which the 
areas A, B and C are equal is sometimes said to be 
'balanced' (e.g. Gibbs 1983), though it is important to 
realize that this only refers to the preservation of hanging 
wall cross-sectional area during movement. A more 
powerful constraint is imposed by the use of this term in 
Dahlstrom's (1969) sense, in which bed length is pre- 
served during movement. This sense is not applicable 
here, as the length ab in Fig. l(a) is not equal to the 
length cd in Fig. 1 (c). 

The hanging wall cross-sectional area is preserved in 
Fig. 1, and it is possible to describe the change in its 
shape by simple shear in the plane of section• The 
graphical techniques used by Verrall (1981) and Gibbs 
(1983, 1984) to relate the fault and rollover geometries 
assume that the simple shear occurs on vertical planes. 
However, there is no reaon why this should be so, and 
indeed, antithetic faults observed within hanging wall 
blocks are generally not vertical. We will now develop 
more general analytical relations between fault and 
sediment geometries, that allow for non-vertical simple 
shear. 

Note that the footwall in Fig. 1 remains undeformed 
throughout. This is an important assumption for both 
graphical and analytical methods, and will be discussed 
later. 

a = ( x ' , y ' )  
b = (x' + 8x', y '  + & ' t a n  7 ' )  
c = (x' + Uo&, y '  + v(x ' )  6 0 
d = ( x ' +  8 x ' +  U o & , y ' +  6 x ' t a n y  

+ v(x' + & ' )  ~t) 

The new dip of element cd is ~ ' ,  given by 

& '  tan 0'  = Ed = v(x'  + & ' )  8t - v(x ' )  8t 
+ 6x' tan 7' 

dv 
• ". tan ~,' = dx----;" 8t + tan 7'. (1) 

However, if no voids are to form, the hanging wall must 
remain in contact with the fault surface, and the velocity 
at x'  must always be parallel to the fault, of dip O'(x') 

and 

V 
- -  = tan 0' 
U,, 

dv Uo 
dO' cos 2 0' 

(2) 

Combining (1) and (2) gives 

tan~b' = Uo & dO' 
COS 2 0 '  d x '  

+ tan 7'. (3) 

But Uo 8t is the displacement in the x'  direction and 
constant throughout the hanging wall. If Uo 6t = h' ,  
then (3) may be rewritten 

tan g / -  tan 7' = h '  d (tan 0') (4) 
dx' 

o r  

d h '  d2F' 
dx---; (B' - R ' )  = dx'2" (5) 

Hence integration gives 

B' = h  ' d F '  
dx' 

= R' + C' ,  (6) 

The Jbrward problem: from fault to sediment geometry where C' is a constant• This expression is only valid if 

To begin with we will consider the movement in a 
coordinate frame attached to the footwall block• The 
planes in which simple shear occurs are parallel to the y '  
direction, which is not, in general, perpendicular to the 
Earth's surface (Fig. 2). In this frame, the velocity in the 
x'  direction is a constant U0 and that in the y '  direction is 
v = v(x ' ) .  The shape of the bed is B'  = B ' ( x ' )  and that 
of the fault is F '  = F' (x ' ) ,  where B'  and F '  are the y '  
coordinates of the bed and the fault. 

Consider an element of bed ab whose length in the x'  
direction is 6x', which has been moved a small distance 
Uo 6t in the x '  direction and then deformed by simple 
shear parallel to the y '  direction, such that point a moves 
to c and b moves to d. Let us suppose that before 
deformation the bed had a shape given by R'  = R ' (x ' ) ,  
with a dip of 7' at the point (x', y ' ) .  The coordinates of 
points a, b, c and d are 

~~y ~ ~ (horizontcdl 

/ \ \  

/ +Y ° ",U 
O" 

Fig. 2. Coordinate systems and geometrical relations used to derive the 
analytical expressions in the text. 
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dF'/dx' is continuous. In most cases the initial shape of 
the bed before deformation may simply be described by 
R'  = x' tan % + D' ,  where D' is a constant and % is 
the regional dip in the (x', y ' )  frame. The value of C' 
depends on the origin chosen for the coordinate frame. 
If the origin is chosen such that R' = R;I, B' = B(I and 
dF'/dx' = tan 06 at x' = 0, then 

C' = B~ - R~ - h' tan 0(~, (7) 

when (6) becomes 

B' - B[)= h'(dF' ) RP , \ d x '  - t a n  06 + - R 0 .  ( 8 )  

These expressions are all in the (x', y' ) co-ordinate 
frame, in which simple shear is in the y' direction. But 
the (x', y ' )  frame is rotated through an angle a with 
respect to the (x, y) frame, in which y is the downward 
pointing vertical (Fig. 2). Therefore the fault F(x) and 
regional dip R(x), defined in the (x, y) frame, must be 
rotated into the (x', y ' )  frame using the relations 

x' = x cos a + y sin ce (9) 
y' = - x s i n a + y c o s a ,  

where y is F or R. The heave h', must also be calculated 
in the (x', y ' )  frame from the fault displacement vector 
before eqn (6) carl be applied. A simple differentiation 
will then yield the geometry of the bedding in the 
hanging wall, B', in the (x', y ' )  frame, which can be 
returned to the (x, y) frame using the relations 

x = x' cos a - y '  sin a 
(10) 

y = x ' s i n a + y ' c o s a .  

Equations (7) and (8) show that, given an observed 
fault geometry F(x), the bedding in the hanging wall 
B(x) may be determined if (i) the shape of the bed 
before movement, R(x), (ii) the vector displacement on 
the fault, h, and (iii) the angle a between the downward 
vertical and the direction of simple shear in the hanging 
wall, are all specified. Note that the graphical construc- 
tions of Verrall (1981) and Gibbs (1983, 1984) assume 
that the simple shear is in vertical planes (i.e. a = 0°). 
As will be shown later, this assumption greatly affects 
the predicted geometry of the hanging wall sediments. 

The inverse problem: from sediment to fault geometry 

From eqn (8) 

F' 1 i x' = - -  ( B '  - B ; -  ( R '  - R ; )  
hP  ~ 0 

+ h' tan 0;} dx', (11) 

where, once again, the boundary conditions B;, 0; and 
h' must be known. Thus, given an observed bed 
geometry, the fault geometry may be calculated for 
various angles of simple shear, a. Because the inverse 
problem is an integration, it is more stable than the 
forward problem, which involves differentiation. This 
difference is fundamental and is not an artefact of the 

method used to solve the problem. Therefore the 
geometry of the beds in the hanging wall, determined by 
(8), will be strongly affected by small variations in the 
dip of the fault. 

It is fortunate that the geologically important problem 
involves an integration, since numerical differentiation 
is not accurate, even when proper precautions are taken. 

Assumptions 

The main assumptions inherent in the derivation of 
equation (6) are: 

(i) All displacements are small. 
(ii) There is no movement out of the plane of section. 
(iii) Deformation of the hanging wall is accomplished 

by simple shear. This is clear, since 

Ov Ou Ou 
- -  - -  - -  O 

Oy' Ox' Oy' 

and 

0v U0 d ,). 
O x ' -  h; dx-- ; (R ' -  B 

It is worth noting that simple shear on parallel planes 
is probably a reasonable assumption for the deformation 
in the hanging wall as it allows finite motion to occur on 
fault planes that do not intersect. 

(iv) The footwall remains undeformed throughout. 
(v) Sediment geometry has not been altered by com- 

paction. 

Of these, (iv) is probably the most important, and is 
least likely to be correct when applied to the deeper parts 
of faults that penetrate basement and are responsible for 
extension on a crustal scale. However, for growth faults 
of the type found in the Gulf of Mexico and Niger Delta, 
where extension of the basement does not take place, 
this assumption is more likely to be justified. Compac- 
tion may alter the geometry of beds within the hanging 
wall, particularly when syntectonic deposition occurs. A 
method which takes compaction effects into account is 
outlined in the Appendix. 

On seismic reflection profiles the scales in the x and y 
directions are usually not equal. Provided that the exag- 
geration is constant (i.e. that the y scale is not a function 
of y), the expressions (6) and (7) will still be valid, and 
lead, of course, to corresponding exaggeration in the x 
and y scales of B and F. It is not therefore necessary to 
convert published seismic sections to true-scale sections; 
they can be digitized directly and the equations will then 
give the fault geometry at the same vertical exaggera- 
tion. Though this approach is clearly not accurate, it is 
often the only one possible (see below). However, unless 
h and a are accurately known, there is probably little 
purpose in making detailed corrections for velocity vari- 
ations and compaction. If this is not done, it is important 
to remember that the value of a which should be used is 
the apparent, and not the true, dip of the planes of 
simple shear in the time section. 
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SYNTHETIC EXAMPLES 

An analytic test 

Y 

y= i 'GN-1  X 

Fig. 3. The shape of a simple curved fault, given by F = tan -~ x. 

The use of the equations may be illustrated by a simple 
analytic example,  with a fault shape described by 
F = tan-~ x (Fig. 3). Let  us also assume that R = 0 and 
a = 0 °, in which case x = x '  and y = y ' .  Note that the 
dip of the fault is zero at y = 7#2 and 45 ° at y = 0. From 
(6) 

h B - - - + C .  
l + x  2 

S i n c e B ~ 0 a s x ~  o0, C = 0 a n d  

h 
B - 1 + x ~ (12) 

Let  us suppose the bed meets the fault at h = x -- e, 
where e ~ 1. (e, e) therefore satisfies both (12) and 
y = tan -1 x. 

Then 

E 

B - 1 + x ~ (13) 

The inverse problem can now be posed. Given equa- 
tion (13) as the geometry of the bed, determine the fault 
geometry F(x) if a = 0 ° and R = 0. 

From (11) 

= tan-1 x + Cx + D. (14) 

Since the fault goes through the origin, D = 0. Clearly F 
is indeterminate unless dF/dx is given somewhere.  

dF  1 
- - - + C  

d x  l + x  2 

If dF/dx = 1 at x = 0 (i.e. 0o = 45°), then C = 0 and 
F = tan -~ x, as it should. 

The importance of  inclined simple shear 

h=£ 

o 

Q .~,-- h-~m n --U ? -;r 

bed 

o<:oo d e f 
I 

f 

= 1,5 ° 

o b s e r v e d  f o,u(f  

Fig. 4. Illustration of the forward problem using a dog-leg fault whose 
segments  dipping at 45 ° and 0 ° are linked by the arc of  a circle, so that 
dF/dx is continuous.  The shape of the hanging wall surface is shown for 
simple shear at ot = 0 ° (dashed) and a = 45 ° (solid line). The two 
surfaces are the same between b and c and d and f; a l though for a = 0 ° 
the final point on the fault, g, gives information on the bedding only as 
far as e. Equat ion (6) is only valid if e is small, so the vertical scale of 
the hanging wall surface has been exaggerated arbitrarily to illustrate 
the difference between a = 0 ° and a = 45 °. The original level of the 
hanging wall surface is given by point a. The inset, bot tom left, shows 
why, given a displacement ab on the fault with heave h, the horizontal 
movement  of the rigid part of the hanging wall (i.e. overall mass  
transport  or extension of the hanging wall block) depends on a. By 
referring to Fig. 1, it is clear that,  for vertical simple shear  point b has 
apparently come from m, and the horizontal extension is am = h. If 
the simple shear is inclined at a ,  point b has apparently come from n, 

and the horizontal extension is an = h (1 + tan 00 tan a),  

case, and that cross-sectional area is conserved. Why 
then is the area of the depression in each hanging wall 
different? The reason is that, in the case where a = 0 °, 
the horizontal displacement of the rigid part  of the 
hanging wall is h, but where a ~ 0 °, the rigid part  of the 
hanging wall is displaced h(1 + tan 00 tan a) .  In this 
case, where 00 = 45 ° and a = 45 °, the inclined shear 
example represents an additional extra extension of 
100%. If 00 = 60 ° and a = 60 ° this would rise to 300%. 
This example illustrates one of the most important  
results of this study: that the dip of the fault and the 
apparent  displacement of a bed on it are not sufficient to 
work out the amount  of  extension, if that bed has also 
deformed in the hanging wall. The inclination of the 
simple shear in the hanging wall (perhaps given by the 
dip of minor antithetic faults) is also needed. 

The inverse problem is illustrated in Fig. 5 using a bed 
whose shape is given by B = h/(1 + x2). Given R = 0, 

The forward problem is illustrated in Fig. 4 using a 
fault with a dog-leg geometry,  the two legs being joined 
by a circular arc. For simplicity R = 0. Two beds are 
drawn, both of which have the same infinitesimal dis- 
placement  down the fault plane, and the same apparent  
horizontal heave on the fault, h = e. However ,  in one 
case the hanging wall has been deformed by vertical 
simple shear (a  = 0 °) and in the other case simple shear 
has occurred inclined at a = 45 °. The resulting shapes 
are very different, though as x becomes large, both 
return to the regional level of R = 0. Note that the 
displacement of the bed on the fault is the same in each 

~--h~ observed bed 

~ = 45° b 

" - -  . . . .  a =  0 ° 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c 

Fig, 5. Illustration of the inverse problem. Two different fault 
geometries  are predicted from the same observed bed shape and 
apparent  offset, h. The dashed line is the fault predicted for a = 0 ° and 
the solid line the fault predicted when a = 45 °. Note that when 
a = 45 ° the observed bed contains no information on the fault 
geometry beyond point b, whereas when a = 0 ° the fault may be 

extended as far as point c (vertically below a). 
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00 = 45 ° and h, two different fault geometries are shown: 
one for a = 0 ° and the other for a = 45 °. These exam- 
ples clearly illustrate the dramatic effect of inclined 
simple shear in the hanging wall block, and the danger of 
assuming a = 0 °. 

Real examples and applications 

The method described here should really be used only 
on seismic sections that are depth migrated and not 
affected by compaction. Unfortunately few such sections 
are available in the literature, and there are even fewer 
in which footwall and hanging wall stratigraphies are 
also shown, so that the heave, h, may be estimated. 
Nonetheless three examples that do not meet all these 
ideal requirements will now be briefly discussed. Differ- 
ences between the results obtained below and those 
obtained using equations which deal with compaction 
(see Appendix) do not significantly alter our conclu- 
sions. 

Predicting fault shapes or simple shear in the hanging wall 

The first example is taken from Gans et al. (1985). 
Figure 6(a) shows a line drawing from a migrated seismic 
line across the Spring Valley in east-central Nevada. The 
alluvial fan and playa lake deposits that underlie Spring 
Valley define a wedge of west-dipping to sub-horizontal 
reflectors truncated on the west by a large normal fault 
(the Schell Creek Fault), which outcrops at the base of 
the Scheli Creek Range. The seismic line runs approxi- 
mately perpendicular to the strike of the Schell Creek 
Fault and motion is thought to be almost entirely in the 
plane of section. 

Near the base of the layered sedimentary wedge, a 
prominent band of reflectors, labelled event E, may be 
traced. This event was identified as a disconformity 
between lacustrine sediments and underlying volcanic 
rocks by drill logs from the Yelland well (SP 1630). The 
dip of the Schell Creek Fault near the surface can be 
estimated as about 45 ° from the truncation of the layered 
reflectors in the hanging wall. This value is typical of 
other such faults in the Basin and Range Province 
(Smith & Bruhn 1984). Since the infilling sediments are 
predominantly lacustrine, we can assume that the 
regional dip at time of deposition was approximately 
horizontal, i.e. that R = 0. Can we now use the shape of 
horizon E to estimate the shape of the Schell Creek Fault 
at depth? 

Figure 6(b) shows the shape of horizon E and the 
shape of the Schell Creek Fault beneath it, calculated 
using eqn (11), for two cases: one in which simple shear 
is vertical (c~ = 0 °) and the other in which it is inclined at 
45 ° towards the west (a = 45°). A minimum heave, h, is 
estimated from the truncated relectors as shown, 00 = 
45 ° and R = 0. The two fault shapes are clearly very 
different. Interestingly, the shape calculated using 
a = 45 ° coincides at depth with reflectors labelled L in 
Fig. 6(a), which Gans et al. (1985) tentatively suggest 
may represent a deep part of the Schell Creek Fault. If 

this identification is correct it implies that a = 45 ° and 
the hanging wall is pervasively sheared by small faults 
dipping 45 ° towards the west. It is worth noting that 
Gans et al. identify a few such faults in their line drawing 
(Fig. 6a). 

Although Fig. 6(a) is migrated, the y axis shows two 
way travel time rather than depth. The vertical exagger- 
ation is unlikely to be uniform with depth, and, until the 
section is depth corrected, no firm conclusions can be 
drawn from this experiment. Nonetheless this example 
illustrates one use of the method: the main unknowns 
are the shape of the fault and the direction of simple 
shear, a. A priori knowledge of one of these (from 
reflections off the fault plane or observations of anti- 
thetic faulting in the hanging wall) could be used to 
predict the other. 

Testing structural models 

The second example is taken from Wernicke & 
Burchfiel (1982). Figure 7(a) shows an interpreted seis- 
mic section across a normal fault. Wernicke & Burchfiel 
(1982) also show the same section uninterpreted (their 
fig. 15), which is remarkable for the clarity of reflections 
from the fault plane and from the beds within the 
hanging wall. Note that their interpretation includes 
numerous sub-parallel small faults in the hanging wall, 
thus also establishing a likely directon of simple shear 
(~ = -15°). Thus F, B and ~ are all indicated. Is this 
interpretation self-consistent? 

No stratigraphy was given with this example, and 
therefore the most difficult parameter to estimate is the 
heave, h. In the absence of any other information we 
assume that the top marked reflector, A, is offset from 
the surface, and that the heave is h, as marked in Fig. 
7(b). Since the surface is not horizontal we assume an 
initial dip of Y0 = 4 °. 00 is estimated as 55 °. Three 
calculated fault shapes are shown in Fig. 7(b), with 
values of a of - 15, 45 and 90 °. Clearly, that of 45 ° agrees 
best with the observed fault shape, and the value of - 15 ° 
implied by Wernicke & Burchfiel's interpretation of 
minor faulting in the hanging wall leads to a poor 
prediction of the fault shape. 

On the face of it a better interpretation would include 
minor faulting dipping at 45 ° towards the main fault 
plane. This is compatible with the uninterpreted 
observed seismogram, which simply shows severe inter- 
nal deformation of this part of the hanging wall. In 
reality of course, with no stratigraphic control on the 
heave and no corrections for compaction (which may be 
important, given the obvious growth across the fault and 
the high deposition rates implied by the non-horizontal 
surface) or non-uniform vertical exaggeration, this 
example serves mainly to illustrate the use of the method 
in testing structural models. 

Use of redundant data 

It is apparent from the first two examples that the main 
obstacle to determining the shape of the fault plane 
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L 
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Fig. 6. (a) Line drawing across Spring Valley, east-central Nevada, taken from Gans et al. (1985). (b) Shapes predicted for 
the Schell Creek Fault from the geometry of reflector E shown as lines a (a = 45 °) and c (a = 0°). Note that when a = 45 ° 
the easternmost point of reflector E contains no information on the fault geometry beyond point a. The position of reflectors 
L in part (a) are shown by dashed lines in part (b). Both figures have the same horizontal and vertical scales, with no 
substantial vertical exaggeration in the top part of the section. The values of 0o and a are thus approximately true. 

Reproduced by permission. 

(even if d e p t h - c o r r e c t e d ,  d e c o m p a c t e d  sect ions  are  
ava i lab le )  is the u n k n o w n  d i rec t ion  o f  s imple  shear ,  a.  
Wi th  one  o b s e r v a t i o n  (B)  and  two u n k n o w n s  ( F a n d  a )  
the  p r o b l e m  is i n d e t e r m i n a t e .  W h a t  p rogress  may  be 
m a d e  if the  g e o m e t r y  of  m o r e  than  one  bed  is obse rv-  
ab le?  

S imple  shea r  in the  hanging  wall  is l ikely to be accom-  

m o d a t e d  by  pervas ive  sub-para l l e l  smal l  faults.  N u m e r -  
ous obse rva t ions  suggest  tha t  it is eas ie r  to con t inue  
using an exis t ing fault  than  to c rea t e  a new faul t ,  even  if 
the  app l i ed  stress changes  slightly. F o r  this r eason  the 
an i so t ropy  or  ' g ra in '  i m p a r t e d  to the  hang ing  wall  by  
smal l  faults  t ak ing  up  an ear ly  ep i sode  of  s imple  shea r  
m a y  well  con t ro l  the  d i rec t ion  of  s imple  shea r  dur ing  the 
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Fig. 7. (a) Interpreted section taken from Wernicke & Burchfiel (1982). (b) Fault shapes predicted from the geometry of 
bed A using three values of or: - 15, 0 and 45 °. The vertical and horizontal scales in (a) and (b) are equal. The observed fault 
is shown by a dashed line in (b). Note that the extent of bed A provides no information on the fault beyond point a when 
a = 45 °. For the case of a = - 15 ° the fault extends belows point d, but has been prematurely truncated in this picture. No 
horizontal scale was given in the original picture of Wernicke & Burchfiel, so vertical exaggeration is uncertain. Reproduced 

by permission. 

s ubsequen t  d e f o r m a t i o n  of  l a te r ,  over ly ing  hor izons .  If  
this h a p p e n s ,  the  smal l  faul ts  in the  hang ing  wall  will be  
subpara l l e l  at all s t r a t ig raph ic  levels .  Since the  d e f o r m a -  
t ion  of  the  hang ing  wal l  is a s sumed  to be  by  s imple  shear  
only ,  the  p lanes  of  s imple  shea r  a re  not  r o t a t ed  in the  
(x ' ,  y ' )  f r ame  of  the  foo twal l  dur ing  d e f o r m a t i o n .  

H e n c e ,  a should  r e m a i n  cons tan t  t h r o u g h o u t  the  defor -  
ma t ion  of  the  hang ing  wall .  Since the  faul t  g e o m e t r y  also 
r e ma ins  unc ha nge d ,  obse rva t ions  of  two b e d  ge ome t r i e s  
should  be  sufficient to d e t e r m i n e  the two unknowns  F 
and a .  W i t h  th ree  o r  m o r e  b e d  g e o m e t r i e s  known,  the  
a s sumpt ion  of  cons tan t  a can be  t es ted ,  and  a fo rma l  
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inversion scheme applied to find the 'best' fault geometry 
and direction of a which will allow simultaneous fitting 
of all observed beds. Such a scheme requires both the 
initial shape, R, of each bed and the displacement on the 
fault to be known, as there is no reason why they should 
be the same for different beds. 

This approach is illustrated using a section from Bruce 
(1973; his fig. 7) taken from the Texas coastal area 
(Fig. 8a). The vertical exaggeration on this section is 
about 2: 1. Is it possible to find a single fault geometry 
and angle of simple shear, a, that can account for the 
geometry of both beds A and B? Figures 8(b) and (c) 
show that the fault geometry suggested by Bruce in Fig. 
8(a) can be predicted from both beds, using a common 
value for a of 26 ° (true dip 45°), in reasonable agreement 
with the small hanging wall faults in Fig. 8(a), with 
70 = 6° (true dip 3 °) for bed A and 70 = 17° (true dip 8 °) 
for bed B. These differing values of Y0 imply that R is not 
the same for both beds, though their actual values are 
not dips because of the vertical exaggeration. Note how 
a value of a = 0 ° predicts a fault geometry completely 
different from that suggested by Bruce (Fig. 8d). Once 
again, since no allowance has been made for variable 
vertical exaggeration, migration or compaction, this 
example should be regarded simply as illustrative of the 
method. 

EXTRAPOLATION TO CRUSTAL SCALES 

The method of relating fault and sediment geometries 
described here relies on the footwall remaining unde- 
formed throughout.  These ideas are likely to work 
reasonably well for faults which redistribute the 
sedimentary cover in a basin, rather than contribute to 
overall crustal extension. On a crustal scale, where faults 
penetrate the deep basement and do lead to crustal 
extension, there are likely to be two difficulties. 

The first is that the deeper  part of the footwall is likely 
to experience some form of distributed deformation. 
This is particularly probable below the maximum depth 
at which earthquakes nucleate (usually 6-15 km on 
continents), where, although 'faults' are thought to exist 
and are seen on some deep reflection profiles, how much 
motion is concentrated on them and how much is dis- 
tributed in the blocks either side is unknown. This is 
discussed further by Jackson (1986). In spite of the 
uncertainty surrounding the nature of faults in the lower 
crust, large faults in the upper crust, above the nuclea- 
tion depths of earthquakes, probably do represent con- 
centrated simple shear with relatively little internal 
deformation of the footwall. The justification for this 
statement comes mainly from seismological observa- 
tions: while aftershocks of major normal faulting earth- 
quakes are common in footwall blocks, their cumulative 
seismic moment  is usually insignificant compared to that 
of the mainshock. Thus the methods described in this 
paper should work in the upper parts of large crustal- 
scale normal faults. 

In practice a second difficulty arises: that of large-scale 

NW S[ 

A ~ : ~  - ~ ~ ~ ~  ~ ~-'~" ~ ~ . . . . . .  - ~ -d~ ;  = 
- ~ - : '  - - ~ .  ~ ~  . . . . .  ~ - - ~ _ . .  ~ - ~  4 ~ ...... 

?±: " 3 ~  2:) 

MILES 

"T- h 

i A 

(b) 
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(c) \ B 
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h 
~ =  60 ° 

A 

=0 o 

Fig. 8. (a) Interpreted section taken from Bruce (1973). (b)-(d) are 
drawn with the same vertical and horizontal scales as (a), and show the 
fault geometries predicted from the shapes of beds A and B using 
a = 26 ° (b and c) and a = 0 ° (d). The fault drawn by Bruce in (a) is 
shown dashed in (b)-(d). The vertical scale Is exaggerated by about a 

factor of two. Reproduced by permission. 

rotation of crustal blocks about a horizontal axis. This is 
a necessary consequence of trying to stretch the crust 
(pure shear) by movement  on faults (simple shear) and 
is the justification behind 'domino-style'  models of crus- 
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Fig. 9. (a) Migrated and depth corrected seismic section across the Po Plain, Italy, from Peri (1983). The horizontal and 
vertical scales are equal.  (b) and (c) are drawn to the same scale as (a). (b) shows the interpreted position of reflector A,  
identified as near  the top of the Miocene. It is offset by a small thrust  fault. (c) Predicted geometry of the thrust  with depth 
calculated from the shape of reflector A,  with 8o = 40 ° and % = 6 °. Some deeper reflectors, labelled B, are also shown. 
Three  different predicted fault geometries are shown, corresponding to values of c~ of - 3 0  °, 0 ° and +30 °. Reproduced by 

permission. 
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tal extension (e.g. Ransome etal. 1910, Morton & Black 
1975). The rate of this rotation can be calculated if the 
rate of horizontal extension and the fault block geometry 
are known (see e.g. Le Pichon & Sibuet 1981; Wernicke 
& Burchfie11982), or can be estimated from stratigraphic 
arguments. Such rotation means that the footwall itself 
rotates, and allowance must be made for this when 
applying the methods used in previous sections. 

A NOTE ON THRUST FAULTS 

Equations (6) and (11) are equally valid ifh is negative 
and shortening across a thrust fault occurs. The forward 
problem, of calculating the bed shape given the fault, 
can be illustrated using the geometry in Fig. 5. Given a 
bed whose initial shape is R = h/(1 + x 2) and a fault 
F = tan -~ x, what will be the shape of the bed after a 
small reverse displacement of heave - h  on the fault, 
assuming vertical simple shear (a = 0°)? 

From (6): 

o r  

d (tan_ 1 x) + h 
B =  - h  E 1 + x  -------~ + C 

B = constant 

as it should. 
A real example is provided by Peri (1983) in the Po 

Plain, N. Italy (his fig. 3.4.1-18). Figures 9(a) and (b) 
show a migrated, depth-corrected seismic section across 
a thrust that offsets a horizon labelled A, identified from 
a borehole as near the top of the Miocene sedimentary 
section. Figure 9(c), which extends a little further south 
of Figs. 9(a) and (b), shows the geometry of reflector A 
and also that of some deeper subparallel reflectors, 
labelled B. The question may be asked: at what depth (if 
any) does the thrust fault become parallel to the 
sedimentary layering? 

The answer, of course, depends on the inclination of 
the simple shear that has led to the formation of the 
gentle fold in the hanging wall. In Fig. 9(c) three differ- 
ent predicted fault shapes are shown, corresponding to 
values of a of -30 ° (pervasive imbricate thrusting in the 
hanging wall), 0 ° (vertical simple shear) and +30 ° (per- 
vasive back-thrusting in the hanging wall). In this case 
no reflectors appear to be continuous across the base of 
the section, even at the deepest levels, so that perhaps 
c~ < 0 ° (imbricate thrusting) is the most likely. In prac- 
tice, it is harder to estimate h and 0o for thrusts as, unlike 
in the case of normal faults, abrupt truncations of 
sedimentary horizons are rarely seen. Figure 9 should 
therefore be considered only as illustrative of the 
technique as applied to thrusts. 

DISCUSSION 

The examples shown here demonstrate that fault 
shapes can be predicted with some confidence if the 

direction of simple shear in the hanging wall is known. 
The assumption that the hanging wall deforms by simple 
shear is, of course, central to the derivation of the 
equations we use. This assumption may not be unrealis- 
tic, as it is equivalent to implying that the hanging wall 
deforms by motion on numerous parallel small faults 
that do not intersect (of the type illustrated in Fig. 7a). 
All the examples shown here suggest that this simple 
shear did not occur on vertical planes, but on planes 
whose true dip is inclined towards the fault at about 45 ° . 
This is consistent with the observation that antithetic 
faults in hanging walls are rarely vertical, even on the 
scale of faults that penetrate the entire brittle upper 
crust and generate earthquakes (see Jackson 1986). A 
dip of 45 ° is in the middle of the range of dips observed 
for seismically active normal faults worldwide, and in 
the absence of any other information it is probably 
sensible to assume that a = 45 ° (true dip) rather than 0 ° 
[the value used by Verrall (1981) and Gibbs (1983, 
1984)]. Such a difference in the value of a leads not only 
to a great difference in predicted fault shapes (see Figs. 
6-8) but also to a substantial difference in the estimated 
horizontal extension in the hanging wall. Assuming the 
faults eventually become horizontal at depth, then 
simple shear inclined at 45 ° leads to extensions of 2h for 
horizon E in Fig. 6 and 4h for horizon A in Fig. 8: 
increases of 100 and 300% above that estimated from 
offset of the bed on the fault alone. In the case of thrust 
faults, ignoring the presence of inclined simple shear will 
lead to an underestimate of the amount of shortening in 
the hanging wall. 

Compaction may be an additional complication par- 
ticularly for normal faults. Its principal effects are dis- 
cussed in the Appendix. Allowing for compaction will 
not alter the arguments presented in the main body of 
this paper concerning the importance of inclined simple 
shear. However one important observation, summar- 
ized in Fig. 10(b), is that differential compaction can 
lead to a pronounced downwarping of sediments in the 
hanging wall. This may result in the formation of a 
'hanging wall syncline', giving the appearance of'normal 
drag' with a long wavelength. 

If such hanging wall synclines are used to calculate 
fault geometry without allowing for compaction, the 
predicted fault will have a convex-upwards shape 
(Fig. 11), whereas in fact the syncline is more likely to be 
due to differential compaction of hanging wall sediments 
above a planar fault. 

CONCLUSIONS 

Provided displacements are small and the hanging 
wall deforms by simple shear (thus preserving cross- 
sectional area), an analytical expression exists that 
relates the shape of a normal fault in cross-section to the 
shape of the bedding horizons in its hanging wall block. 
The expression also assumes that the footwall remains 
undeformed throughout. The expression may be inte- 
grated provided the boundary conditions are specified. 
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lkm ~ observed fault 

ent offset of a bed on the fault, if the bed has been 
deformed in the hanging wall: the dip of the simple shear 
planes in the hanging wall must also be known. 

Although this study has concentrated on normal fault- 
ing, the method is equally applicable to thrust and 
reverse faults, as demonstrated by Fig. 9. 
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Fig. 10. Bed geometries have been calculated for a given fault with 
compaction effects taken into account. Solid lines show beds without 
compaction while dashed lines show beds with compaction. (A) Beds 
represented by solid lines were deposited, and thus partially com- 
pacted, prior to faulting. Motion on the fault causes a depression to 
form in the hanging wall. This fills with sediment (dotted) causing the 
original beds to compact further. Note that the deepest bed compacts 
less than the shallowest one since it was already partially compacted. 
a = 45 °, q~l = 0.6, A = 2 km. (B) All of the beds shown were depo- 
sited during faulting. After each increment of slip, the depression 
formed fills with sediment causing deeper beds, which were originally 
at the surface, to compact. Note that in (B) the effect of compaction 

increases with depth whereas in (A) it decreases with depth. 

Perhaps the most important result is that the direction of 
simple shear within the hanging wall block has a very 
strong influence on the shape of the bedding horizons 
within it. Graphical techniques relating fault and sedi- 
ment geometries have been described by Verrall (1981) 
and Gibbs (1983, 1984), which assume that the simple 
shear occurs by movement in vertical planes. This con- 
dition is clearly a special case, and the examples 
described here, as well as the observation that minor 
hanging wall faults are not always vertical, suggests it is 
not, in general, valid. A substantially different geometry 
is obtained for the fault if the simple shear planes in the 
hanging wall are inclined to the vertical, and estimates of 
the amount of extension in the hanging wall may change 
by a factor of two or more. Indeed, this study demon- 
strates that the amount of horizontal extension across a 
normal fault cannot be estimated simply from the appar- 

~ .  ,,,observed bed / /  

"'--.. with compaction lkm 
without compaction 

Fig. 11. Illustration of the inverse problem where the fault geometry is 
calculated given a compacted bed geometry. Solid line shows the fault 
calculated when compaction is neglected. Note the convex-upwards 
bulge close to where the bed meets the fault in this case. Dashed line 
shows the fault geometry obtained with compaction taken into 
account. Here the upper part of the fault is planar, Parameters as in 

Fig. 10. 
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APPENDIX 

Unconsolidated sediments generally contain considerable amounts 
of water (often at least 50% by volume). During burial, this water is 
lost and the sediment compacts. Such a process will obviously change 
the shape of a sedimentary horizon within the hanging wall of a normal 
fault. 

The purpose of this appendix is to investigate the importance of this 
process using expressions which are approximately correct and which 
should be adequate to illustrate the effects one should expect. Most 
authors assume that the strain produced by compaction is uniaxial, the 
axis of shortening being vertical. This assumption is reasonable pro- 
vided lateral variations in facies and thickness of the sedimentary 
layers can be neglected. However, it is unlikely to be an accurate 
description of the strain field in regions undergoing tectonic deforma- 
tion during sedimentation. The equations governing the behaviour of 
such a system have recently been developed (McKenzie 1984). Unfor- 
tunately they are not easily solved. The principal difficulty is that the 
compaction rate of the matrix is governed by the pressure of the 
interstitial water, which is in turn controlled by the water flow within 
the whole region. Hence local changes in porosity are governed by the 
behaviour of the whole system, Under these conditions, the porosity 
cannot be obtained from depth of burial alone. 

No attempt has been made here to solve this more general problem. 
Instead. we have simply modified the standard expressions relating 
porosity to depth of burial (Magara 1978, Steckler & Watts 1978, 
Sclater & Christie 1980) so that some of the geometric consequences of 
compaction can be explored. The resulting eqn (A15) only provides an 
approximate solution to the full problem and, for this reason, should 
be applied with care. 

Equations developed earlier assume that the hanging wall deforms 
by simple shear alone. If the strain rate distribution is more compli- 
cated, these equations do not hold. This situation is avoided by 
constraining the strain field produced by compaction to be uniaxial 
with the axis of shortening parallel to the shear direction within the 
hanging wall. Under these conditions, the deformation caused by 
compaction can be treated separately to that caused by movement on 
the fault. Hence the problem can be solved. It is important to stress 
that the above constraint has been arbitrarily imposed so that a 
solution may be obtained with ease. Nevertheless it is unlikely to be 
any worse than assuming that compaction involves uniaxial shortening 
which is purely vertical. 

The necessary expressions may now be derived. Given that compac- 
tion occurs by uniaxial shortening parallel to y ' ,  the resultant velocity 
field is calculated. This is required to be parallel to the fault at every 
point so that voids do not form at depth. The final result is a first-order 
differential equation which can be solved by iteration. 

The porosity at any depth, d, below a pre-faulting surface of dip y is 

4' = 4'o exp - ~  (All  

where 

d = y - x tan 3', (A2) 

4~ is the initial porosity and A is a constant governing the change of 
porosity with depth. As before, the (x', y ' )  co-ordinate frame is 
rotated through an angle, a, with respect to the (x, y)  frame. Therefore 
the porosity at any point in the (x', y ')  frame is 

aS'= 4',~ exp { - ~ , ] ,  (A3) 

where 

4"[' = 4'° exp { - x '  sin (ct - cos y (a4) 

and 

3., _ /t cos "/ . (A5) 
cos (c~ - ~,) 

As before, the fault, F ' ( x ' ) ,  is considered fixed in the (x', y ' )  co- 
ordinate frame. We determine the movement of the bed, given by 
B ' ( x [ ,  t) where x6 is the initial value ofx '  for some point on the bed. A 
Lagrangian reference frame x6 is then used to follow the movement of 
a point on the bed. By differentiating with x<'~ fixed, the velocities in the 
x' and y' directions are 

Uo= ~ ,<;" v = ~ ,,, (A6) 

respectively, Neither F' (x ' )  nor 4~'j(x') are functions oft  in the (x', y') 
frame. Differentiation of F' (x') thus gives 

Therefore 

similarly 

dF' 
dF' = ~-7 ok'. 

- rq ' ,  

(04';,] = v, (A8) dqS~ 2 
at /~. dx"  

where U0 is the x '  component of the velocity (constant within the 
hanging wall). 

Both (A7) and (A8) take account of the effect of compaction on the 
velocity field. 

The volume of solid material, V~, in a vertical section between the 
bed and the fault is 

V~ = (1 - O') dy'. (A9) 

Substitution of (A3) into (A9), followed by integration yields 

Since compaction is uniaxial in the y' direction, V~ must remain 
constant in a frame fixed to the hanging wall. Therefore 

(0v  / 
~t-}.,,., = (). (A1 l) 

Note that the condition 

0V" = 0 (A12) 
Ot 

is not satisfied because in a frame fixed to (x ' ,  y') ,  and thus to the 
footwall, the volume of sediment between the bed and the fault at any 
given value of x' ,  must change as the hanging wall is displaced. In an 
extreme case, when the hanging wall moves far enough, the point 
where the bed meets the fault passes the chosen value ofx '  and there 
is no material left between the fault and the bed. Clearly conservation 
of sediment volume only occurs in a frame fixed to the hanging wall 
(x~l). Therefore (Al l )  is the correct condition to impose. Differentia- 
tion of (A10) gives 

\ i ~ l '  j I ,  

As before, movement should be parallel to the fault. This gives, from 
(6), 

v 6t = B '  - R '  - C' ,  Uo 6t = h' .  (A14) 

Substitution of (A4), (A6), (A7), (A8) and (A14) into (A13) then 
yields 

dF'  _ (B' - R' - C'){1 - 4'[j exp ( -B ' / a ' ) }  
dx' h '{ l  - 4'[~ exp ( - F ' l h ' ) }  

4'it tan (a - y){exp ( -B ' /A ' )  - exp (-F' /3. ' )} 
- (A15) 

{ 1  - 4'; exp ( - f ' /3 . ' )}  

This first-order differential equation can be solved by iteration 
either for F '  when B'  is given, or for B' when F'  is given. When 
4'~; = 0, (A15) reduces to a previously derived expression. This pro- 
vides an initial solution to (A15). Only three or four iterations are then 
required to find the correct solution since convergence is rapid. 
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Examples and implications 

Figure 10 illustrates the effect of compaction on two different 
depositional situations. In Fig. 10(a) the beds were deposited, and 
hence partially compacted, prior to the onset of faulting. As a result of 
faulting, beds close to the fault move to deeper levels than those 
further away in the hanging wall and are buried by young sediments 
deposited in the depression adjacent to the fault. Therefore,  beds close 
to the fault compact more than those further away in the hanging wall 
block. The effect on bed geometry is greater for shallow beds since 
deeper beds lost much of their porosity prior to faulting. 

Figure 10(b) shows the effects of compaction on beds that were all 

deposited during faulting. In this case compaction leads to a pro- 
nounced downwarping of beds adjacent to the fault resulting in the 
creation of a 'hanging wall syncline'. This is similar in shape to what is 
often described in the lierature as 'normal drag' (Hamblin 1965, Hobbs 
etal. 1976), except that it is on a longer wavelength. 

It is important to note that if such synclines are used to infer fault 
geometry without allowing for compaction, a convex-upwards fault is 
predicted (Fig. l l ) .  In fact, it is more likely that hanging wall synclines 
arise due to differential compaction above an initially planar fault. The 
presence of features similar to those illustrated in Figs. 10 and 11 is 
probably a good indication that the effects of compaction are signifi- 
cant and should be allowed for. 


